Code No. 8192 / Core

FACULTY OF SCIENCE

M.Sc. II - Semester Examination, May / June 2019

Subject: Mathematics / Applied Maths

Paper – I Galois Theory

Time: 3 Hours

Max.Marks: 80

Note: Answer all questions from Part-A and Part-B.

Each question carries 4 marks in part-A and 12 marks in Part-B.

PART – A (8x4 = 32 Marks) [Short Answer Type]

- 1 Let $f(x) \in F[x]$ be a polynomial of degree >1. If $f(\alpha) = 0$ for some of $\alpha \in F$ then f(x) is reducible over F.
- 2 If E is a finite extension of F then show that E is an algebraic extension of F.
- 3 Let $F = \frac{z}{(2)}$ then prove that the splitting field of $x^3 + x^2 + 1$ e.E[x] is a finite field with eight elements.
- 4 Let F be a finite field then prove that the number of elements of F is pⁿ for some positive integer n and p is prime number.
- 5 Prove that $G = G\left(\frac{C}{R}\right)$ is a group of R-automorphisms of ¢ and |G| = 2.
- 6 Prove that the group $G\left(\frac{Q(\alpha)}{Q}\right)$, where $\alpha^5 = 1$ and $\alpha \neq 1$ is isomorphic to the cyclic group of order 4.
- 7 Prove that $\phi_8(x)$ and x^8 -1 have the same Galois group, namely $\left(\frac{Z}{(8)}\right) = \{1, 3, 5, 7\}$, the Klein four group.
- 8 Show that $x^5 9x + 3$ is not solvable by radicals over Q.

PART – B (4x12 = 48 Marks) [Essay Answer Type]

- 9 a) Let $F \subseteq E \subseteq K$ be fields. If $[K:E] < \infty$ and $[E:F] < \infty$ then show that
 - i) [K:F] <∞
 - ii) [K:F] = [K:E] [E:F]

OR

- b) For any field K the following are equivalent
 - i) K is algebraically closed
 - ii) Every irreducible polynomial in K[x] is of degree 1
 - iii) Every polynomial in K[x] of positive degree factors completely in K[x] into linear factors
 - iv) Every polynomial in K[x] of positive degree has atleast one root in K.

- 10 a) Prove that the degree of the extensions of the splitting field of $x^3 2 \in \mathbb{Q}[x]$ is 6. **OR**
 - b) If E is a finite separable extension of a field F then prove that E is a simple extension of F.
- 11 a) Let H be a finite subgroup of the group of automorphisms of a field E then $[E:E_H] = |H|$.

OR

- b) State and prove fundamental theorem of Galois Theory.
- 12 a) Let F contains a primitive nth root w unity then the following are equivalent.
 - 1) E is a finite cyclic extension of degree n over F
 - ii) E is the splitting field of an irreducible polynomial $x^n b \in F[x]$

Further more $E = F(\alpha)$ where α is a root of $x^n - b$.

OR

- b) Prove that the following are equivalent statements:
 - i) a ε R is constructible form Q
 - ii) (a, 0) is a constructible point from QxQ
 - iii) (a, a) is a constructible point form QxQ
 - iv) (0, a) is a constructible point from QxQ.

Code No.8194/CORE

FACULTY OF SCIENCE

M.Sc. II-Semester Examinations, May/June 2019

Subject: Mathematics / Applied Maths

Paper-II

Lebegue Measure and Integration

Time: 3 Hours

Max. Marks: 80

Note: Answer all questions from Part-A and Part-B. Each question carries 4 marks in Part-A and 12 marks in Part-B.

$PART - A (8 \times 4 = 32 \text{ Marks})$

- 1 If E_1 and E_2 are any two measurable subsets of $\mathbb R$ then show that $E_1 U E_2$ is also measurable.
- 2 If $F: E \to [-\infty, \infty]$ is a measurable function then show that |f| is a also a measurable function. (Here E is a measurable subset of \mathbb{R}).
- 3 Define simple function. Show that every simple function defined on a measurable set $E \subseteq \mathbb{R}$ can be written as the linear combination of characteristic functions of a finite collection of measurable sets.
- 4 Suppose f is a bounded measurable function defined on E with m(E) < ∞ . If E₁, E₂ are any two disjoint measurable sets, then show that $\int_{E_1 \cup E_2} f = \int_{E_1} f + \int_{E_2} f$
- 5 If F: [a, b] \rightarrow IR is of bounded variation on [a, b], then show that $P_a^b N_a^b = f(b) f(a)$.
- 6 Let $f_n : [0, 1] \rightarrow IR$ be given by

$$f_n(x) = \begin{cases} 1 & \text{if} \quad x \in \left[\frac{k}{2^r}, \frac{k+1}{2^r}\right] \\ 0 & \text{otherwise} \end{cases}$$

Where $n=2^n+k$, $0 \le 0$ k < 2r. Then show that $f_n \to f$ [measure] on [0,1] where f(x)=0 \forall $x \in [0,1]$.

- 7 Suppose f is integrable on [a, b] and $\int_{[a,x]} f = 0$ for all $x \in [a,b]$ then show that f(x) = 0 a.e on [a,b].
- 8 Let a, b, t are non negative real numbers and $1 \le p < \infty$. Then show that $a^p + pt \ ba^{p-1} \le (a + tb)^p$.

PART – B $(4 \times 12 = 48 \text{ Marks})$

- 9 a) i) Suppose {E_n} is a sequence of measurable sets in IR such that
 - i) m (E_1) < ∞ and
 - ii) $E_n \supseteq E_{n+1} \forall n \ge 1$ then show that $\lim_{n \to \infty} m(E_n) = m \left(\bigcap_{n=1}^{\infty} E_n\right)$
 - ii) Give an example to show that $m(E_1) < \infty$ is essential in the above result (i).

- b) Show that there exist bounded non measurable set in IR.
- 10 a) State and prove bounded convergence theorem.

b) Suppose f and g are Lebesgue measurable functions defined on E then show that

i)
$$\int_{E} f + g = \int_{E} f + \int_{E} g$$

ii)
$$\int_{E} cf = c \int_{E} f$$
 Where $C \in \mathbb{R}$

11 a) State and prove Vitali covering lemma

- b) i) If $f:[a,b] \rightarrow IR$ is a monotonic function, then show that f is of bounded variation [a, b].
 - ii) If $f:[a,b] \rightarrow IR$ is of bounded variation on [a,b] then show that f is of bounded variation on [a, x] where a < x < b.
- 12 a) Let f, $g \in L^p[0, 1]$ where $K p < \infty$. Then show that $||f + g||_p \le ||f||_p + ||g||_p$

b) Suppose f is Lebesgue integrable on [a, b]] and F is its indefinite integral. Then show that F is continuous on [a, b] and also F is of bounded variation on [a, b].

Code No. 8197 / CORE

FACULTY OF SCIENCE

M.Sc. II - Semester Examination, May / June 2019

Subject: Mathematics

Paper – III Complex Analysis

Time: 3 Hours

Max.Marks: 80

Note: Answer all questions from Part-A and Part-B.

Each question carries 4 marks in part-A and 12 marks in Part-B.

PART – A (8x4 = 32 Marks) [Short Answer Type]

- 1 Show that analytic function cannot have a non-zero constant absolute value without reducing to a constant.
- 2 Find all values of z such that (1) $e^z = 1 + \sqrt{3}i$ (2) $e^z = 1+i$.
- 3 Let C be the triangle with vertices at 0, 3i, -4. Prove that $\int_{C} (e^{z} \overline{z}) dz \le 60$.
- 4 Let C be the circle $z = e^{i\theta} \left(-\pi \le \theta \le \pi \right)$. For $a \in \mathbb{R}$, prove that $\int_C \frac{e^{az}}{z} dz = 2\pi i$. And hence compute $\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta$.
- 5 Let C: $w = e^{i\varphi} \left(-\pi \le \varphi \le \pi\right)$ and $e^{\frac{Z}{2}(w-\frac{1}{w})} = \sum_{n=-\infty}^{\infty} J_n(z)w^n \ (0 < |w| < \infty)$. Prove that $J_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\varphi-z\sin\varphi)} d\varphi$
- 6 Let C denote the circle |z|=1, taken counter clock wise, show that $\int\limits_{C} \exp\left(z+\frac{1}{z}\right)dz=2\pi\,i\,\sum_{n=0}^{\infty}\frac{1}{n!(n+1)!}\,.$
- 7 State and prove Jordan Lemma.
- 8 Evaluate $\int_{0}^{2\pi} \cos^{2n} \theta \, d\theta$ (n = 1, 2, ...).

PART – B (4x12 = 48 Marks) [Essay Answer Type]

9 a) State and prove the necessary condition for differentiability of a complex valued function f(z).

- b) Find the most general harmonic polynomial of the form $u = ax^3 + bx^2y + cxy^2 + dy^3$ and hence find the corresponding harmonic conjugate. Express f in terms of z.
- 10 a) State and prove Gauchy Goursat theorem.

OR

- b) i) State and prove Cauchy's integral formula.
 - ii) State and prove Morera's theorem.
- 11 a) State and prove Laurent theorem.

OR

b) Let C_N denote the positively oriented boundary of the square whose edges lie along the lines

$$x = \pm (N + \frac{1}{2})\pi$$
 and $y = \pm (N + \frac{1}{2})\pi$

where N is a positive integer, show that $\int_{C} \frac{dz}{\sin z} = 2\pi i \left(\frac{1}{6} + 2 \sum_{n=1}^{N} \frac{(-1)^n}{n^2 \pi^2} \right).$

12 a) Evaluate
$$\int_{-\infty}^{\infty} \frac{1}{x^4 - 1} dx.$$

OR

b) State and prove argument principle.

. . . .

Code No.8202/CORE

FACULTY OF SCIENCE

M.Sc. II-Semester Examinations, May/June 2019

Subject : Mathematics

Paper-IV: Topology

Time: 3 Hours

Max. Marks: 80

Note: Answer all questions from Part-A and Part-B. Each question carries 4 marks in Part-A and 12 marks in Part-B.

$PART - A (8 \times 4 = 32 Marks)$

- 1 Give an example to show that the union of two topologies on a set X need not be a topology.
- 2 Define interior of a set A in topological space (X,T). Also show that the interior of A is the largest open subset of A.
- 3 Show that any continuous image of a compact space is compact.
- 4 Show that every sequentially compact metric space is lotally bounded.
- 5 Show that a topological space is a T₁ space if each one point set is a closed set.
- 6 Define a complete regular space.
- 7 Show that a topological space X is connected if φ and X are the only subsets of X which are both open and closed.
- 8 Let X be a topological space and A is subspace of X and is connected. If B is any subspace of X such that $A \subset B \subset \overline{A}$ then show that B is also connected.

PART B (4 x 12 = 48 Marks)

- 9 a) Let (X, T) be a topological space and A is a subset of X then
 - i) Define boundary of A
 - ii) Show that A is the disjoint union of the set of all boundary points of A and the set of all interior point of A.

OR

- b) State and prove Lindelof's theorem.
- 10 a) Show that a topological space is compact if and only if every class of closed sets with finite intersection property has nonempty intersection.

OR

- b) Show that a complete totally bounded metric space is compact.
- 11 a) Show that a one to one continuous mapping of a compact space onto a Housdorff space is a homeomorphism.

OR

- b) State and prove Tietze extension theorem.
- 12 a) Show that a subspace of the real line IR is connected if and only if it is an interval.

OR

- b) i) Define box topology.
 - ii) If β , ζ are the open bases for topological spaces X and Y respectively then show that $D = \{B \times C \mid B \in \beta, C \in \zeta\}$ is a base for the box topology on X x Y.

Code No. 8203 / CORE

FACULTY OF SCIENCE

M.Sc. II – Semester Examination, May / June 2019
Subject: Mathematics / Applied Mathematics

Paper – V
Theory of Ordinary Differential Equations

Time: 3 Hours

Max.Marks: 80

Note: Answer all questions from Part-A and Part-B.

Each question carries 4 marks in part-A and 12 marks in Part-B.

PART – A (8x4 = 32 Marks) [Short Answer Type]

- 1 Prove that the functions $x_1(t) = t^2$ and $x_2(t) = t$ |t| are linearly independent on $-\infty < t < \infty$ but they are linearly dependent on the intervals $-\infty < t \le 0$ and $0 \le t < \infty$.
- Let $\varphi_1, \varphi_2, ..., \varphi_n$ be n linearly independent solutions of the homogeneous equation $L(x) = x^{(n)} + b_1(t) x^{(n-1)} + ... + b_n(t) x=0$, $t \in I$ exists on I. Let x_p denote any particular solution of the non-homogeneous equation L(x) = I(t) existing on I then prove that any solution of x of L(x) = h(t) is given by $x(t) = x_p(t) + c_1 \varphi_1(t) + ... + c_n \varphi_n(t)$, $t \in I$ where $c_1, c_2, ..., c_n$ are n arbitrary constants (real or complex).
- 3 Determine the constants L, K and h for the IVP $x' = x^2$, x(0)=1, $R=\{t,x\}$ / $|t| \le 2$. $|x-1| \le 2$.
- Assume that f(t) and g(t) are non-negative continuous functions for $t \ge t_o$. Let k > 0 be a constant then prove that the inequality $f(t) \le k + \int\limits_{t_o}^t g(s) f(s) \, ds$, $t \ge t_o$ implies the inequality
 - $f(t) \le k \exp\left(\int_{0}^{t} g(s) ds\right), t \ge t_{o}$
- 5 Define;
 - Upper solution
 - ii) Lower solution of the IVP x' = f(t, x), $x(t_0) = x_0$ on $[t_0, t_0 + h]$.
- 6 State and prove Bihari's inequality.
- 7 Show that every second order homogeneous linear differential equation can be reduces to self adjoint form.
- 8 $y_1(x) = x$ is one solution of the second order differential equation $x^3y'' xy' + y = 0$, x > 0 then find second solution $y_2(x)$.

PART - B (4x12 = 48 Marks)[Essay Answer Type]

9 a) Let $\varphi_1, \varphi_2, ..., \varphi_n$ be n linearly independent solutions of the homogeneous equation $L(x) = (x)^n + b_1(t) x^{(n-1)} + ... + b_n(t) x=0, t \in I$ existing on I. Let the real or complex valued function h be defined and continuous on I. Further, assume that $w(t) = w(\varphi_1, \varphi_2, ..., \varphi_n)$ and $w_k(t)$ denotes the determinant w(t) with k^{th} column replaced by n elements 0, 0, ...,1. The show that a particular solution $x_p(t)$ of L(x) = h(t) is given by $x_p(t) = \sum_{k=1}^{n} \varphi_k(t) \int_{t_0}^{t} \frac{w_k(s) h(s)}{w(s)} ds, t \in I.$

- b) Let b₁, b₂, ..., b_n be real or complex valued functions defined and continuous on an interval I and $\varphi_1, \varphi_2, ..., \varphi_n$ are n functions of the equation $L(x) \not\ni x^{(n)} + b_1(t) x^{(n-1)} + ... +$ $b_n(t)$ x = 0, tell existing on I. Then prove that these n solutions are linearly independent on I if and only if $w(t) \neq 0$ for every $t \in I$.
- 10 a) Let f(t,x) be continuous and be bounded by and satisfy Lipschitz condition with Lipschitz constant K on the closed rectangle R then prove that the successive approximations x_n , n = 1, 2, ... given by $x_n(t) = x_0 + \int_{t}^{t} f((s, x_{n-1}(s))) ds$, n = 1, 2, ...converge uniformly on an interval $|=t-t_0|| \le h$, $h=\min\{a,\frac{b}{a}\}$, to a solution x of the IVP x' = f(t,x), $x(t_0) = x_0$. Also, prove that this solution is unique.

- OR b) Prove that the IVP x'=f(t,x), $x(t_0)=x_0$ has a unique solution defined on $t_0 \le t \le t_0+h$, h > 0, if the function f(t, x) is continuous in the strip $t_o \le t \le t_o \le h$, $|x| < \infty$ and satisfies the Lipschitz condition $|f(t,x_1) - f(t,x_2)| \le K|x_1 - x_2|, k > 0$, K being Lipschitz constant.
- 11 a) Let $m \in \mathbb{C}\{[t_0, t_0+h), R\}$, $f \in \mathbb{C}\{[t_0, t_0+h) \times R, R\}$ and $D^+m(t) = \lim_{h \to 0} \sup \frac{1}{h}[m(t+h) m(t)] \le 1$ $f(t, h(t)), t \in (t_0, t_0 + h)$ then prove that $m(t_0) \le x_0$ implies $m(t) \le r(t), t \in [t_0, t_0 + h)$ where r(t)is the maximal solution of x' = f(t, x), $x(t_0) = x_0$ existing on $[t_0, t_0+h]$.
 - b) Let $f \in C$ [I X R, R], v_o , w_o be lower and upper solutions of x' = f(t, x), $x(t_o) = x_o$ such that $v_0 \le w_0$ on $I = [t_0, t_0+h]$. Suppose, further that $f(t,x) - f(t,y) \ge - M(x-y)$ for $\leq x \leq w_o$ and $M \geq 0$. Then prove that there exists monotone sequence $\{v_n\}$, $\{w_n\}$ such that $v_n \to v$ and $w_n \to w$ as $n \to \infty$ uniformly and monotonically on I and that v, w are minimal and maximal solutions of x' = f(t,x), $x(t_0) = x_0$ respectively.
- 12 a) State and prove Sturm separation theorem.

OR

b) State and prove Sturm Picone Theorem.